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Abstract

Background: Hi-C and its high nucleosome resolution variant Micro-C provide a window into the spatial packing of a
genome in 3D within the cell. Even though both techniques do not directly depend on the binding of specific
antibodies, previous work has revealed enriched interactions and domain structures around multiple chromatin
marks; epigenetic modifications and transcription factor binding sites. However, the joint impact of chromatin marks
in Hi-C and Micro-C interactions have not been globally characterized, which limits our understanding of 3D genome
characteristics. An emerging question is whether it is possible to deduce 3D genome characteristics and interactions
by integrative analysis of multiple chromatin marks and associate interactions to functionality of the interacting loci.

Result: We come up with a probabilistic method PROBC to decompose Hi-C and Micro-C interactions by known
chromatin marks. PROBC is based on convex likelihood optimization, which can directly take into account both
interaction existence and nonexistence. Through PROBC, we discover histone modifications (H3K27ac, H3K9me3,
H3K4me3, H3K4me1) and CTCF as particularly predictive of Hi-C and Micro-C contacts across cell types and species.
Moreover, histone modifications are more effective than transcription factor binding sites in explaining the genome’s
3D shape through these interactions. PROBC can successfully predict Hi-C and Micro-C interactions in given species,
while it is trained on different cell types or species. For instance, it can predict missing nucleosome resolution Micro-C
interactions in human ES cells trained on mouse ES cells only from these 5 chromatin marks with above 0.75 AUC.
Additionally, PROBC outperforms the existing methods in predicting interactions across almost all chromosomes.

Conclusion: Via our proposed method, we optimally decompose Hi-C interactions in terms of these chromatin marks
at genome and chromosome levels. We find a subset of histone modifications and transcription factor binding sites to
be predictive of both Hi-C and Micro-C interactions and TADs across human, mouse, and different cell types. Through
learned models, we can predict interactions on species just from chromatin marks for which Hi-C data may be limited.
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Introduction

The accumulating evidence suggests that 3D nuclear
architecture is important for the gene expression regula-
tion, key element in transcriptional regulation [1], and it
is firmly connected to genome’s function. The 3D chro-
matin structure brings DNA regions separated by great
genomic distance into spatially closer sections, organiz-
ing interactions between regulatory elements and genes.
As an example, enhancer and corresponding transcription
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factors are brought within close distance of beta-globin
locus genes and impact their expression by folding. Sim-
ilarly, the disruption of an eQTL in FTO gene turns on
a pro-obesity phenotype and increases the expression of
distant genes IRX3 and IRX5 in preadipocytes [2]. Thus,
modeling and computing genome’s 3D shape is crucial to
completely understand the functioning of cells.

Multiple chromosome conformation capture experi-
mental techniques, for instance Hi-C, have remark-
ably improved our comprehension of 3D chromatin
structure [3]. Hi-C methods generate chromatin inter-
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actions throughout the genome and contact frequen-
cies between pair of loci. The number of chromatin
interactions between pair of loci is a measure of how
such loci pair are near each other in 3D space. At a
given resolution, Hi-C experiment returns interaction fre-
quency matrix which represent the cross-linking preva-
lence among DNA restriction fragments as output. Hi-
C experiments have revealed A and B compartments
which correspond to the partition of spatial genome
into open and closed chromatin [4]. Among these com-
partments, A compartment is related to easily acces-
sible, transcriptionally active euchromatin. Similarly, B
compartment is related to condense, transcriptionally
inactive heterochromatin. Resulting analysis of the Hi-
C interaction matrix at a higher resolution has discov-
ered topologically-associated domains (TADs) which are
frequently-interacting, sequential, closely-located interac-
tion matrix areas [5]. TADs are pervasive genome organi-
zation unit which are stable attributes of Hi-C matrices.
TADs match greatly with cellular differentiation and long-
range transcriptional control [6].

Similarly, Micro-C is a Hi-C based method where
micrococcal nuclease is used instead of restriction
enzymes to fragment chromatin, enabling nucleosome
resolution chromosome folding maps. Chromatin is frag-
mented to mononucleosomes, thereby increasing both
fragment density as well as uniformity of spacing. Cru-
cially, Micro-C overcomes the current resolution gap of
Hi-C at the fine scale, which now allows us to investigate
more detailed chromatin structures. Hi-C and Micro-C
technologies have led to the intuitive observation of the
genome structure of human and mouse [7, 8], and yeast
[9]. During this text, we will use the term Hi-C to refer
both Hi-C and its very high nucleosome resolution varint
Micro-C experiments.

Epigenetics is quite important in understanding the
basic cellular pathways and processes occurring in chro-
matin (DNA repair, splicing, transcription, and repli-
cation). Even though Hi-C does not directly depend
on the binding of specific antibodies, previous analysis
has revealed enriched interactions and domain struc-
tures around multiple chromatin marks; histone modi-
fications and transcription factor binding sites (TFBSs)
[5, 10]. Interactions between these 1D chromatin marks
are important in three-dimensional genome structure
even if these interactions causal direction is unknown.
For instance, histone modification H3K27me3 is signifi-
cantly diminished within TAD boundaries [11] whereas
insulator proteins, modifications H3K27ac and H3K4me3
are enriched inside TAD boundaries. TAD boundaries
are stabilized by the cohesin complex and are gener-
ally enriched in architectural proteins such as transcrip-
tional repressor CCCTC-binding factor (CTCF) [5, 12].
Moreover, CTCF and cohesin play an important role in
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chromatin loop formation [13] and in establishment of
FIREs [14].

Despite such analyses, the ability of histone modifica-
tions affect 3D genome shape through the binding sites
remains poorly understood across species, cell types, and
cell cycles. This can be partially due to the fact that the
previous research on the relationships between histone
modifications and genomic structures have frequently
considered each modification independently, ignoring
their joint quantitative effects. However, it has been previ-
ously shown that multiple modifications are jointly impor-
tant in genome shape. For instance, both H3K4me3 and
H3K27me3 are known to be effective in TAD formation
[5, 15] which fail to explain TADs when considered inde-
pendently. Additionally, we do not fully know the degree
of importance of the relationships between the histone
modifications across species and cell types. Similarly, we
also do not know whether a subset of histone modifica-
tions are primarily important in explaining observed Hi-C
interactions, and thus 3D genome shape.

In this paper, we focus on the problem of identifying
the relationships between high-order chromatin interac-
tions and chromatin marks; epigenetic and transcription-
related marks. Distinctively, we aim to understand and
predict how Hi-C and Micro-C interactions are formed
as a result of these marks and interactions within them.
We propose a generative probabilistic method PROBC
to decompose genome-wide Hi-C and Micro-C interac-
tions by chromatin marks. PROBC estimates interaction
probabilities between chromatin marks based on con-
vex likelihood optimization, which can directly take into
account both the interaction existence and nonexistence.
Through PROBC, we systematically find 4 histone modifi-
cations (H3K27ac, H3K9me3, H3K4me3, H3K4mel) and
CTCEF to be highly predictive of most Hi-C and Micro-C
interactions across cell types and mammals when con-
sidered together. Similarly, we also identify subset of
transcription factor binding sites to be highly predic-
tive of Hi-C and Micro-C interactions. We complete
the missing Hi-C and Micro-C interactions and predict
intra-chromosomal interactions at a very high resolu-
tion. Identified sparse set of chromatin marks account for
a large proportion of the accuracy of Hi-C prediction,
matching with their known roles, which fail to predict
Hi-C and Micro-C interaction when considered indepen-
dently. These marks and interaction probabilities between
them inferred by PROBC can also be interpreted as latent
biases in Hi-C and Micro-C experiments. We also dis-
cover that chromatin marks are conserved across cell
types and species in a robust way: PROBC trained on
embryonic stem cells work on IMR90 cells quite accu-
rately, and PROBC trained on mouse keep working well on
human. However, we also interpret our cross-species and
cross-cell types results carefully as suggested in [16].
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In the rest of the paper, we start by formally defining
PROBC problem while presenting an optimal method to
understand the relationships between chromatin marks
and genome shape through Hi-C and Micro-C. Then, we
infer a subset of chromatin marks effective in explain-
ing Hi-C and Micro-C interactions. Lastly, we present
results on the prediction of Hi-C and Micro-C interac-
tions and TADs on the same species as well as across
species and cell types. Overall, our contributions can be
summarized as follows: 1- We come up with a novel
formulation for the problem of systematically identify-
ing mark interactions and biases in Hi-C and Micro-C
data throughout the genome at a very high resolution,
2- We propose a rigorous method PROBC with optimal-
ity guarantee which is also the first method to identify
the importance of chromatin marks in higher resolution
Micro-C dataset, 3- We show that most of the inferred
epigenetic and transcription-related marks and relation-
ships between them exist consistently across different
mammals and cell types regardless of the experiment
type, 4- We exploit such relationships to predict genome
organization of mammals without the interaction data,
through epigenetic and transcription-related marks. We
find PROBC to outperform the state-of-the-art methods
in Hi-C and Micro-C interaction prediction across most
chromosomes. As a result, we find that identified chro-
matin marks and interactions between them carry suffi-
cient information to predict genome structures. Addition-
ally, all predictions made by PROBC give an efficient guide
to explore the organization of chromatin.

Related work

Previous research has analyzed various genomic struc-
tures through epigenetic marks without taking the inter-
actions between the marks into account. Developed meth-
ods analyze the data without defining a generative model.
Rao et al. [3] and Ernst and Kellis [17] analyzed how
enhancers, CTCF, histone modifications are distributed
across the genome in terms of Hi-C chromosomal con-
tacts. On the other hand, Al Bkhetan and Plewczyn-
ski [18] uses a statistical learning framework to predict
3D chromatin looping interactions inside TADs from
transcription factor profiles and epigenomics. Similarly,
Ashoor et al. [19] predicts genomic sub-compartments
from Hi-C chromatin interaction data by unsupervised
graph embedding. Lastly, Sefer and Kingsford [15] and
Libbrecht et al. [20] has analyzed the histone modifica-
tions impact in TAD prediction without focusing on Hi-C
interaction prediction.

In another set of research, deep non-generative mod-
els have been used to analyze epigenetic modifications on
Hi-C. Di Pierro et al. [21] predicts subcompartment anno-
tations from plethora of epigenetic modifications and
protein binding sites by using a deep neural network only
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in GM12878 cells. However, the application of their deep
learning approach to most other cell types is limited as
most cell types do not have as many ChIP-seq datasets
as GM12878 does. Among similar algorithms, SNIPER
[22] reveals Hi-C subcompartments by imputinvg inter-chro-
mosomal chromatin interactions via autoencoders. Li et al.
[23] predicts interactions only between regulatory elements
by using a bootstrapping deep learning model. Their method
integrates chromatin accessibility and genome sequences
data without taking epigenetic modifications into account.
Similarly, Trieu et al. [24] predicts the impact of solely
non-coding sequence variants on three-dimensional chro-
matin shape by a deep learning approach. On the other
hand, RIPPLE [25] predicts enhancer-promoter interac-
tions in a cell line-specific manner by combining Hi-C
with regulatory genomics datasets.

The most similar work to ours is HiC-Reg, which pre-
dicts Hi-C interactions from one-dimensional regulatory
signals by using a random forest based regression model
[26]. HiC-Reg can capture nonlinear interactions in its
random forest model, and it performs accurately in most
datasets. However, HiC-Reg is not a generative model.
Even though random forest models do a good job at
classification, they do not perform as well for regression
problem since they don't estimate past the range of the
training dataset accurately together with them possibly
overfitting noisy datasets. Additionally, HiC-Reg is not
regularized. Among similar existing work, EpiTensor [27]
and Rambutan [28] construct 3D genome shape from one
dimensional chromatin signals. EpiTensor is capable of
extracting meaningful co-variation patterns from histone
modifications, chromatin accessibility and RNA-seq, but
its decomposition requires a single run jointly across dif-
ferent cell types. Rambutan proposes a deep convolutional
neural network that predicts Hi-C contacts at a very high
resolution using nucleotide sequence and DNase I signal
as inputs. Another recent work [29] develops an adver-
sarial training-based approach to predict Hi-C interaction
maps from 1D epigenomic signals. We found PROBC to
perform better than HiC-Reg, and Rambutan for most of
the tested chromosomes.

Our work is different than the existing work in terms
of the following points: 1- A number of the existing
research such as [3] treat each histone modification
independently without considering the cellular interac-
tions and dynamics between these modifications, 2- The
existing methods don’t come up with generative mod-
els of Hi-C interactions by epigenetic and transcription-
related marks, so interpretability of the relations between
these marks and interactions in these methods is lim-
ited, 3- Some of the existing methods are not provably
optimal, and they do not quantify the degree of rela-
tionships between mark pairs in explaining Hi-C inter-
actions, and 4- The existing methods do not identify the
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importance of chromatin marks in high resolution Micro-
C dataset, but focus only on lower resolution Hi-C dataset.
Therefore, they can not identify the most explanatory set
of epigenetic and transcription-related elements.

Methods

Problem definition

As discussed in [30], Hi-C provides us set of interactions
between restriction sites on overall genome. More for-
mally, let R be the set of restriction sites over considered
genome, Hi-C provides us an undirected interaction graph
G = (V = RE) where E = {Ep,u < v € R*) is
set of interactions between restriction sites and E,,, is the
number of interactions between u and v. We can analyze
these interactions in following 2 ways: 1- We can focus on
working at restriction site level where G is an unweighted
graph and every node is a restriction site, or 2- We bin
the interactions at a given resolution and examine the
resulting graph G = (V' = R, E') where R’ defines fixed-
length genomic intervals (called a bin) without an overlap,
and every edge E,, represents the total interaction count
between restriction sites of bins & and v.

Let M be set of genomic marks such as histone modifi-
cations, transcription factor binding sites that are shown
to be linked to several Hi-C interaction structures [5].
These marks are candidates to explain observed Hi-C
interactions and associated biases. We define c}, to be the
number of mark m € M around restriction site v that
could take binary values if the data is not binned; mark m
either exists or not around v. Let N[v]= {(m,c;},), |m €
M,c,, > 0} be set of mark counts around restric-
tion site v. After binning, N[V]= {(m, 22:1 c’fn), |m €
M, Zi:l cﬁq > 0} where bin Vo= {vi,va,...,vs} € R
includes ¢ restriction sites. Given N = {N[v], v € R} (or
N = {N| V],V e Rl} if the data is binned), we present the
problem 1 to infer set of chromatin marks by which Hi-C
data can be understood:

Problem 1 PROBC: Given Hi-C interaction graph G and
mark data N over a genome as input, we estimate the inter-
action probabilities between all mark pairs that jointly
explain G.

Problem is defined similarly when the input Hi-C inter-
action data and mark data are binned at a provided
resolution. PROBC identifies the most likely subset of
mark interactions jointly explaining both interacting and
non-interacting genomic regions. By inferring the subset
of mark interactions that are important rather than just
marks, PROBC can provide more insight into the relation
between interactions between marks and the formation of
genome shape. PROBC can also take into account the prior
information about marks such as sparsity, and/or block
structure of the effective marks. Identified subset of marks
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and interaction probabilities between marks can also be
interpreted as possible explanations of Hi-C biases.

PROBC: generative probabilistic model to explain hi-C
interactions by mark pairs
We come up with a generative penalized maximum like-
lihood based formulation to model the mark effects in
Hi-C considering both interactions and non-interactions.
Let x,,, be the probability of interaction between marks
m and n, and X = {x,,,, (m,n) € M?} be the symmet-
ric matrix of interaction probabilities between mark pairs.
We assume these interaction probabilities between mark
pairs X to be same across all restriction sites which is
a global characteristic of genome embedding rather than
being a local feature. This assumption is discussed in pre-
vious studies [3, 5, 20, 31, 32]. Dixon et al. [5], Huang
et al. [31] and Fortin and Hansen [32] find distinct pat-
terns of histone marks to be same around topologically
associated domain (TAD) boundaries, and A/B compart-
ments throughout the genome. Rao et al. [3] and Libbrecht
et al. [20] discuss the similarity of marks across TAD
boundaries in different species and cell types.

Given interaction data between restriction sites G, its
likelihood is:

L(X,G) = P(G|X) = l_[ P(E,w|X)
(u,v)EE

[ a-PELIX)
(u,v)¢E
due to independence of Hi-C interactions between restric-
tion sites where P(E,,|X) is the probability of observing
an interaction between restriction sites # and v given
mark interaction probabilities X. As you notice, Eq. 1 is a
multiplication over both interacting and non-interacting
restriction site pairs. We can express P(E,,|X) as in:

PELX) =1- [] [1

(m,c)€N[u] (n,c,)eN[v]

(1)

1- xmn)cmcn (2)

Note that this simple process already ensures that pairs
of restriction sites that have relevant mark pairs are more
likely to interact in Hi-C. This is due to the fact that
restriction sites that share multiple mark pairs receive
multiple chances to create Hi-C interaction.

Although minimizing negative logarithm of the likeli-
hood (1) is non-convex, we can transform it into a convex
problem by changing the variables x,, = 1—e™%. We also
add sparsity and low-rank regularization terms. The spar-
sity of mark interaction probabilities implies that only a
small fraction of mark pairs affect Hi-C interactions. Fur-
thermore, we want to ensure block diagonal/communities
structure of mark interactions matrix which implies low-
rank structures. Block diagonal structure implies that the
probability of interaction between marks m and 7 (%)
to be high when x,,; and x, are also high. Overall, we
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optimize the following objective by imposing both sparse
and low-rank regularization on transformed variables Z =
{zmn, (m,n) € M?}:

argmin —log(£(Z, G)) + MIIZ|l« + A2l Z]y 3)
720

where log(L(Z, G)) can be expressed as:

log(L(Z,G) = ) log (1 _ expruTZCV)
(u,v)eE

- ) cizc,

(u,v)¢E

(4)

where C, =[c%,, m € M] is a M x 1 binary vector of mark
rankZ

counts/existence at site . |Z||,, = D>_;2]"“ 0; is matrix Z’s
nuclear norm, that is sum of Z’s singular values. Matrix’s
nuclear norm has been applied for efficient estimation of
low-rank matrices [33]. Additionally, |Z]; = }_, , |zul
is matrix Z’s /1, that is used to impose the sparsity of
Z. This means we can ignore the effect of mark pairs in
Hi-C which are 0. The parameters A} and Ay control the
strength of the regularization terms. The probability con-
straints 0 < &, < 1 turninto z,, > 0. Problem 3 is convex
as proven in Theorem 1. This means we can find globally
optimal solution by using efficient algorithms as described
in next section.

Theorem 1 Objective 3 is convex.

Proof Linear norm and nuclear norm is convex. Concav-
ity of Eq. 4 depends on concavity of the additive expres-
sions. D, V)¢E CI'ZC, is concave as it is linear expression

of Z.Let C, = C,CI, log (1 — exp~“°Z) is concave as its

. . -cf¢ . . 1
hessian matrix ——— is negative semidefinite. As
(17exp—cu ZCy
Eq. 4 is concave, its negation in Eq. 3 is convex. O
Efficient optimization

Objective function in Eq. 3 is generally difficult to opti-
mize since it is non-differentiable. We use Alternating
Direction Method of Multipliers (ADMM) idea [34] to
solve the problem, which has reasonably good conver-
gence properties derived from more general Douglas-
Rachford splitting approach. The optimization problem
above is converted to multiple subproblems which are
easier to solve by ADMM framework. Specially, we first
present 2 auxiliary variables Z;, Z and convert the opti-
mization problem in Eq. 3 to an equivalent form:

min  —1og(L(Z,G)) + MllZ1ll« + A2llZ2]1
7>0,21,Z> (5)
S.t. 72=7,,2=127,

In Alternating Direction Method of Multipliers, we
optimize the augmented Lagrangian of the problem above
which can be written as:
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L, =—10g(L(Z,G)) + Ml Z1llx + A2l Z2]1
1 p trace (UlT(Z — zl)) + ptrace (UZT(Z - zz))
+ g(nz — 21 + 12 - Z,?)
(6)

where ||.|| denotes the Frobenius norm and p > 0 is the
penalty parameter. The matrices Uy and Uy are the dual
variables affiliated with the constraints Z = Z; and Z =
Z, respectively. We can solve augmented Lagrangian in
Eq. 6 by following the iterative steps below:

ZM1 = argmin £, (Zk, 7,", 2,5, us%, Uzk) 7)
70

Z,*1 = argmin £, (Zk+1, z,%, 2,5, uy%, Uzk) 8)
z,

ZyM*! = argmin £, (Zk+1,Zlk, Z,*, Uy, Uzk) 9)
Zy

U = Uk + (Zk+1 _ Zlk+1>
UMt = Uk + (Zk+1 _ sz+1>

This sequential scheme let us to separate these variables
and optimize them independently one by one. Next, we
describe the optimization problem for Z; and Zy. Then,
we discuss the algorithm that optimizes Z.

(10)

(11)

Solving for Z, and Z:
When solving for Z; in Eq. 8, the relevant L,

T
terms are A1|Z1]l« + ptrace ((U1k> (Zk+1 - Zl)> +

5 (”Zk—'r1 -7 ||2 which becomes:
k+1 . P kst )
2,7 =argmin A1[|Zy [l + 5 HZ —Z1+ Uy H (12)
VA

This problem has a closed form solution:

Z1k+1 — Sh (Zk+1 + Ulk) (13)
p

where soft-thresholding function S,(Q) is S(Q) =
Udiag((o; — oz)+)VT for matrix Q with corresponding Sin-
gular Value Decomposition Q = Udiag(c;)V”. Similarly,
the optimization for Zy can be expressed as follows:

2
7" —argmin 22| Z2 ]l + g sz“ — Zy + Uk H (14)

Zy

which is a closed form solution. The corresponding
(sz+1)ij entry is defined as below according to Zk1 4
U where sgn is sign function:

0 <Zk+1 +U k) < Ay
(Z2* Y = il T as)
Tl.];H else
where Tg“ is defined as:
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A
T;;H = (Zk+1 + U2k> _—sgn ((Zk+1 + U2k> ) =2 (16)
ij P
Solving for Z:
The optimization problem for Z defined in Eq. 6 can be
equivalently written as:

Z1 = argmin Z —log (1 — expruTZCV>
220 ek

+ Y clzc,
() E

2 2
+§(HZ—Zlk+U1kH +HZ—sz+U2k” )
(17)

This problem can be efficiently solved via gradient
descent using the backtracking line search for optimal step
size selection which is based on satisfying the Armijo-
Goldstein condition. Overall, our method is a combina-
tion of ADMM [34, 35] and gradient descent.

Binning variant

When Hi-C data is binned, number of interactions
between genomic regions u and v (E;V) take integer val-
ues, as well as the number of marks at each region. In this
case, resulting distribution P(E,, = k|X) becomes Pois-
son binomial distribution, and the probability of observing
k Hi-C interactions out of T = CI ¥ C, possible Hi-C
interactions between bins # and v is:

PE,=kX)=>" [] G

FeFy (mnfiun)€F

1_[ 1- xmn)fyﬁ'"

(m,nfs,,)eF¢

(18)

where summation is over all subsets of size k. Fy is
set of subsets of size k (Fx = {(m,nfom)|(m,n) €
Mz,fmn = C,MnC27 mpeM? fmn = k}), and F° (F¢ =
{(m,m,fo,) | (mym) € M2,y e [, = T —k}) is com-
plement of F. Fy will contain ((wa elements, the sum
over which is infeasible to compute in practice unless T
is small (e.g. if T = 30, Fi5 contains over 10?° elements).
However, there are other, more efficient ways to calculate
P(E/m, = k|X). By using Le Cam’s theorem [36], Eq. 18 can
be approximated by Poisson distribution as in:

’ )»k 6_)””"
PE,, =kIX) = WT (19)
where A, = CMT XC, is a linear expression of X. This

approximation is close to the exact formulation when
N[u] N[v] is large and x,,¢cpy is small. When replaced
P(E,|X) in Eq. 1 with Eq. 19, resulting optimization
problem is still nonconvex.
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Results

Datasets and implementation

We utilize Hi-C data from human IMR90 cells [3] and
human embryonic stem (ES) cells [14]. We also utilize the
recent high-resolution Micro-C dataset from mouse ES
cells [7]. Genome assemblies are obtained from the UCSC
genome browser. We process species Hi-C sequencing
reads by Juicer and as a result, retrieve the Hi-C inter-
action pairs from the genome assemblies. We obtain
histone modifications and transcription factor binding
sites for human and mouse from UCSC Encode [37] and
NIH Roadmap Epigenomics [38]. We call chromatin mark
peaks by MACS [39] utilizing previously reported param-
eters [40]. For unbinned scenario, we map each chromatin
mark location to near Hi-C restriction sites. A chromatin
mark belongs to a Hi-C restriction site if the mark is at
most 100 away from the restriction site. In this paper,
our analysis is for unbinned case unless mentioned other-
wise. For the binned scenario, we bin transcription factor
binding sites, ChIP-Seq histone modifications, Hi-C, and
DNase-seq data at 1 kb resolution. Then, we estimate
Reads Per Kilobase per Million (RPKM) in each bin by log-
arithmic transformation. This transformation decreases
the high values distorting effects. When there are more
than one replicates for a dataset, we minimize the effect
of batch-related differences by averaging out the RPKM-
level in each bin. Afterwards, we normalize such values
into binary values by simple thresholding at 0.5.

We implement PROBC in Python, and solve several parts
of optimization by L-BFGS method. Datasets and code
are available at http://www.github.com/seferlab/probc.
PROBC is reasonably fast: We can estimate interaction
probabilities between marks in less than 15 minutes on
human IMR90 cells even without binning. We follow five-
fold nested cross-validation to prevent overfitting and
optimize for regularization hyperparameters. When we
train and test on different chromosomes, the outer step
trains PROBC on all chromosomes except the chromo-
some to be predicted in fivefold nested cross-validation.
Within each loop of outer step, we estimate the regular-
ization hyperparameters by utilizing fourfold inner cross-
validation. When we train and test on the same chromo-
some, we apply similar fivefold nested cross-validation on
the single chromosome.

CTCF and a small subset of histone modifications are
critical for predicting hi-C interactions

If we forbid the interactions between chromatin marks,
we find that only 4 histone modifications (H3K27ac,
H3K9me3, H3K4me3, H3K4mel) and CTCF out of total
32 chromatin marks (16 histone modifications, 16 TFBSs)
are sufficient to explain the major proportion of Hi-C
interactions in human ES cells. This is correct for both
unbinned and 5 kb binned cases. These essential set of
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chromatin marks are significantly conserved when this
procedure is repeated across mouse ES and human IMR90
cells with varying number of chromatin marks. Table 1
shows the histone modifications and transcription factor
binding sites used in our experiments across species and
cell types. Figure 1 displays the proportion histone marks
end up showing up in the solutions per chromosome.
When considered independently, H3K4mel, H3K4me3,
H3K9me3, H3K27ac marks are also enough to explain
most intra-chromosomal interactions.

Among the most important 5 chromatin marks,
H3K4mel, H3K27ac are enhancer-specific marks.
H3K9me3 is part of heterochromatin and is known to
have repressive roles, whereas H3K4me3 is an activating
mark. The same subset of histone modifications are
important for human IMR90 cells as well, where activat-
ing mark H3K9ac and H3K36me3 that is associated with
active gene bodies and elongation are also part of the
solution. CTCF regulates the 3D structure of chromatin,
and it is known to have roles in forming chromatin
loops, TADs. It also defines the boundaries between
active and heterochromatic DNA [41]. Among the rest of
marks, H3K36me3 and H3K79me2 are known for their
activator roles, whereas H3K27me3 is associated with
polycomb repression similar to H3K9me3. For instance,
Polycomb Repressive Complex PRC2 spreads the repres-
sion by binding to H3K27me3 [42]. PRC1 complex uses
H3K27me3 to prevent the activation of RNAP II preiniti-
ation complex. H3k27me3 is also statistically significantly
depleted in TAD boundaries [11]. H3K36me3 is another
mark of actively transcribed chromatin, which inhibitory
effects depend on which subtype of PRC2 encounters

Table 1 Histone modifications and transcription factor binding
sites used in our experiments

Species & Histone Transcription factor

cell type modifications binding sites

Human ES H3K4me1, H3K4me3, CTCF, SMC3, MAFK,
H3K9me3, H3K27ac, CHD1, POLR2A, Dnase
H3K79me2, H3K36me3, |, RAD21, CEBPB, MAZ,
HA4K20me1, H3K27me3, FOS, USF2, RCORT,
H3K56ac, H3K23ac, RFX5, ELKT, MXI1,
H2AK5ac, H2A.Z, H3K9ac, NFE2L2
H3K4me2, H4K8ac,
H3K18ac

Human IMR90 H3K4me1, H3K4me3, CTCF, SMC3, MAFK,
H3K9me3, H3K27ac, CHD1, POLR2A, Dnase
H3K79me2, H3K36me3, |, RAD21, CEBPB, MAZ,
H4K20me1, H3K27me3, FOS, USF2, RCORT,
H3K56ac, H3K23ac, RFX5, ELKT, MXI1,
H2AK5ac, H2A.Z, H3K9ac, NFE2L2
H3K4me2, H4K8ac,
H3K18ac

Mouse ES H3K4me3, H3K27ac, CTCF, POLR2A, EP300,

H3K36me3, H3K4meT,
H3K9me3, H3K27me3,
H3K9%ac

MAFK, CHD2, HCFCT,
ZC3H11A, ZNF384
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the mark. Presence of PHF1 (characteristic of PRC2.1)
is important for the spread of the H3K27me3 mark
into H3K36me3-rich regions. Similarly, H4K20mel is
associated with transcriptional activation.

Figure 2 show interaction probabilities between only
histone modifications identified by PROBC, where
A1 = 25 and Ay = 1.0 are found by fivefold nested
cross-validation for genome-wide human ES cells. These
parameters are important as otherwise PROBC assigns
non-zero probabilities to all mark pairs. Previously iden-
tified 4 histone modifications have the highest interaction
probabilities within themselves in explaining the given
Hi-C interactions for human ES cells. Additionally, the
interaction probabilities between H3K9ac-H3K4me2,
H3K27me3-H3K27me3,  H3K4mel-H3K4mel, and
H3K9me3-H3K9ac modifications are also high. Both
H3K9ac, H3K4me2 are known to exhibit activator fea-
tures whereas H3K27me3 is known for its repressive
characteristics. Results are similar for human IMR90 cells.

According to the dendrogram in Fig. 2, many modifi-
cations tend to be clustered together in terms of inter-
action profiles. For instance, repressive H3K9me3 and
enhancer-specific modification H3K27ac tend to be sim-
ilar to each other. Similarly, many modifications involv-
ing activating H3K4me2, H4K36me3 and Non-coding
RNA (ncRNA)-repressive H2A.Z [43] also tend to be
clustered suggesting the similar roles of different mod-
ifications on genome shape. The correlation between
genome-wide interaction probability matrices of human
ES and human IMR90 is significantly high 0.96. 5 his-
tone interactions with the topmost probability differ-
ence between human ES and human IMR90 cells is
shown in Table 2. Among these interactions with the
largest probability difference, H3K27me3 - H3K36me3,
H3K9me3 - H3K79me2, and H3K9me3 - H4K20mel are
between repressive histone modifications and modifica-
tions associated with active gene bodies and elongation.
The remaining two modifications are between repres-
sive and activating modifications. These results suggest
the interplay between different types of modifications
can contribute to different three-dimensional genome
shapes among different cell types of a given species. Over-
all, these probabilities can also be interpreted as latent
biases in Hi-C, and can be used to filter out the noise
in Hi-C.

PROBC finds a small subset of transcription factor binding
sites predictive of hi-C interactions

We also examine the independent effect of transcription
factor binding sites in human ES cells. PROBC reveals
CTCF, RAD21, DNase I, TBP, POLRA2, Suzl2, EZH2
in explaining the given Hi-C graph which genome-wide
probabilities are shown in Fig. 3. In this case, the ini-
tial part of the probability matrix is not as probable as
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Fig. 2 PROBC inferred genome-wide interaction probabilities between only histone modifications for human ES cells. A1 = 2.5,and 2, = 1.0 are
found by fivefold nested cross-validation
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Table 2 5 histone interactions with the topmost interaction
probability difference between human ES and human IMR90 cells

Interactions Human ES Human IMR90 Abs. diff.
H3K27me3 - H3K36me3  0.196 0.25 0.05
H3K9me3 - H3K79me2 0 0.04 0.04
H3K9me3 - H3K9me3 0.71 0.67 0.04
H3K9me3 - H4K20me1 0.12 0.09 0.03
H3K4me2 - H3K4me3 0.06 0.04 0.02

in Fig. 2. The accuracy of transcription factor binding
sites is lower than the one for epigenetic modifications.
For instance, almost 12 transcription factor binding sites
give the same Hi-C coverage performance as 4 histone
modifications. Among the identified transcription factor
binding sites, RAD21 encodes an evolutionary conserved
DNA double-strand break repair protein, which is a struc-
tural component of the highly conserved cohesin complex
[44]. DNase I hypersensitive sites identify genome regions
with active genes [45], which is due to them being char-
acterized by accessible, open chromatin. TBP binds to
DNA during the transcription preinitiation complex for-
mation [46]. When histone modifications H3K27me3 and
H3K9me3 are not considered, Suz12 and EZH2 compo-
nents of Polycomb Repressive Complex PRC2 start to
appear in both solutions. Suz12 and EZH2 are respon-
sible for the methylation activity of PRC2, which can
bind to H3K27me3 and repress neighboring nucleosomes.
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The other complex PRC1 uses H3K27me3 to inhibit the
activation of RNAP II preinitiation complex [47]. Lastly,
POLRAZ2 gene encodes the largest subunit of RNA Poly-
merase II, which is responsible for synthesizing mRNA in
eukaryotes.

Among interactions between transcription factor bind-
ing sites, RAD21 and SMC3 interaction is highly prob-
able. Both proteins are part of Cohesin complex, and
SMC3 is present in all cohesin complex whereas there
are multiple paralogs for RAD21. RAD21 is an evolu-
tionarily conserved in all eukaryotes from budding yeast
to human. This interaction is also highly probable in
human IMR90 cells. Similarly, high probability interaction
between TBP binding sites also suggests the importance of
binding to TATA box in genome shape formation. Inter-
estingly, CTCF-JUND and CTCF-MAFK interactions are
also highly probable which do not belong to the same pro-
tein complex. Roles of both MAFK and JUND are different
than CTCF: MAFK is basic region and leucine zipper
(bZIP)-type transcription factor, whereas JUND protein is
a member of the JUN family, and a functional component
of the AP1 transcription factor complex. These interac-
tions need to be carefully examined to further develop
novel insights about genome shape formation.

ProBC predicts Hi-C interactions and genomic structures
from chromatin marks

On human ES cells, PROBC can detect false positive
interactions and predict novel Hi-C interactions. In such
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experiments, fivefold nested cross validation is applied
independently to each chromosome. We first predict
Hi-C interactions from previously identified H3K27ac,
H3K9me3, H3K4me3, H3K4mel, and CTCE. Then, we
obtain ROC curves by decreasing the Hi-C interac-
tion probability threshold from 1 to 0. According to
the pairwise comparison matrix in Fig. 4, 4th chromo-
some shows the best performance with 0.95 ROC AUC
where AUC (Area Under Curve) score shows the trade-
off between false positive and false negative interactions.
Figure 5 shows the details of such prediction by Venn
Diagram for chromosome 4. Similarly, we also visually
compare the predicted interaction matrix with the true
interaction matrix of human ES cells chromosome 1 at
10 kb resolution as seen in Fig. 6. According to cross-
chromosomal experiments, PROBC performance declines
but it is still reasonable when we train it on one chromo-
some and test on a different chromosome. As an example,
we obtain ROC AUC score of 0.86 when we train with
Hi-C interactions on the 6'th chromosome and predict
interactions on the 4’'th chromosome. The similarity of
the chromatin marks found as important across chro-
mosomes suggests the similarity of main properties con-
trolling chromosomal contact formation. Although, there
can still be close-grained differences which have not been
caught by PROBC.

PROBC outperforms random-forest based approach
HiC-Reg, and convolutional neural network-based ap-

Page 10 of 19

proach Rambutan for most of the intra-chromosomal
interaction prediction in terms of ROC AUC score
on human ES cells as in Fig. 7. We cannot compare
PROBC with EpiTensor as EpiTensor constructs inter-
actions jointly across multiple species from chromatin
datasets, whereas the other methods are based on indi-
vidual species. While comparing with HiC-Reg in terms
of ROC AUC, we divide each count value by the sum of
the counts to normalize the HiC-Reg output. The per-
formance difference is the most apparent in chromosome
4. The outperformance of PROBC still exists for human
IMR90 cells. Additionally, both Spearman and Stratum-
adjusted correlation coefficient [48] between PROBC and
HiC-Reg, EpiTensor, Rambutan performances is moder-
ate, showing the impact of the difference between the
nonlinear approaches these methods are based on. Vari-
ables identified as important by HiC-Reg and PROBC
overlap. For instance, H3K27ac, H3K9me3, and H3K4me3
also appear to be important according to out of bag (OOB)
variable importance measure, that measures the change
in OOB error by permuting the feature values. Rambutan
performs slightly better than HiC-Reg as it additionally
uses nucleotide sequence data. However, in terms of other
datasets, it is limited to Dnase I signal.

We also compare PROBC predictions with multi-
ple distance decay-based prediction baselines as seen
in Fig. 8 for chromosome 1 in human ES cells in
terms of ROC curve, where the probability of inter-

AUC per chromosome pair in human ES
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Fig. 4 AUC scores in predicting Hi-C interactions for each pairs of chromosome on human ES cells. We apply fivefold cross-validation to each pairs
of chromosome
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Fig. 5 Real vs Predicted Hi-C Interactions in human ES cells chromosome 4
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Fig. 6 Comparison of predicted vs real Hi-C interaction matrices at 10 kb resolution for human ES cells chromosome 1
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action between two segments u and v is inversely
related to their genomic distance. In more detail,
P(u and v interact with each other) = « d(u,v)? where
d(u,v) is the genomic distance between segments # and
v, and optimal « is learned over the training set. in our
case, we test the performance for various 8 exponent val-
ues for variety of thresholds as in the figure. According to
the figure, PROBC clearly outperforms all three distance
decay baselines with 8 = 1,1.5,2. Among the baselines,
distance decay baseline with 8 = 1.5 performs the best,
but its AUC score is still remarkably lower than PROBC.
In addition to Hi-C prediction, Fig. 9a-b shows PROBC'’s
performance for TAD and compartment domains predic-
tion on human ES cells respectively. The performance
is evaluated for only histone modifications, only tran-
scription factor binding sites, and for combination of
histone modifications and transcription factor binding
sites. We compare the TAD and compartment domains
prediction across different chromatin mark combina-
tions by Normalized Variation of Information (NVI) [49],
which quantifies the distance between predicted and true
TAD/compartment domain partitions with higher score
denotes a worse performance. Domain prediction soft-
ware Armatus [10] is used to identify TADs over pre-
dicted interactions. Similarly, the compartment identi-
fication method in [50] has been used to identify A/B
compartment domains over predicted interactions in 1 kb
resolution. This compartment detection method retrieves
A/B compartments from the signs of the first eigenvector
of the interaction matrix, without requiring any addi-
tional parameters. The compartment prediction results
are relatively robust across different resolutions; When
we use both transcription factor binding sites and histone
modifications, NVI scores are close to 0.05 for matrices
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binned at 10 kb and 40 kb resolutions. PROBC trained
only with histone modifications outperforms the case it
was trained only with transcription factor binding sites
for both TAD and compartment domain prediction. How-
ever, the best TAD prediction performance is observed
when we combine both mark datasets.

We have also analyzed the breakdown of TAD predic-
tion in terms of TAD boundaries as shown in Table 3
across a number of resolutions in all chromosomes of
human ES cells. Even at a higher resolution as 1 kb, PROBC
followed by TAD prediction method Armatus can cor-
rectly predict 12.31% of TAD boundaries correctly. If we
look into the false positive boundaries, we found most
of them to be near the true TAD boundaries, which can
also be inferred from lower NVI scores. The accurracy of
TAD prediction increases if we make the matrices smaller
by decreasing the resolution. For instance, we can predict
69.83% of TAD boundaries correctly at 100 kb resolution.

PrOBC can predict perturbations in 3D architecture

As PROBC indirectly models the chromatin marks contri-
bution to three-dimensional shape via chromatin interac-
tions, we have investigated whether PROBC can forecast
modifications to 3D structure explained via perturbations
over chromatin marks. We have especially focused on
samples where significant chromatin marks are removed
due to structural variations. Despang et al. [51] has inves-
tigated the fusion of TADs when CTCF binding sites are
deleted in vivo at the Sox9-Kcnj2 locus of the mouse
embryonic limb. They have utilized the promoter cap-
ture Hi-C data in the E12.5 mouse limb to display the
changes in structure after removing principal CTCF bind-
ing sites (mm9, GSE78109, GSE125294). In the unmodi-
fied cells, Sox9 and Kcnj2 are part of different TADs. Once
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Fig. 9 TAD and Compartment prediction performance of PROBC by Normalized Variation of Information across only histone modifications, only
transcription factor binding sites, and for combination of both on human ES cells
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Table 3 Real vs Predicted TAD boundaries in human ES cells
across all chromosomes

Resolution

Metrics 1kb 5 kb 40 kb 100 kb
True Positives 10,245 13,452 12,546 4,724
True Positive Rate 1231%  2759%  6231%  69.83%
False Negatives 72,779 35,304 7588 2,042
False Negative Rate 87.69% 7241% 37.69% 30.17%
False Positives 41,123 21,134 6,020 672
Predicted TAD Boundaries 51,368 34,586 18,566 5,396
True TAD Boundaries 83,204 48,756 20,134 6,766

successive 4 CTCEF sites are deleted inside a 15 kb bound-
ary region, the existing TAD boundaries do not appear any
more and TADs are combined together. TADs are fused
more thoroughly once the whole set of CTCF binding sites
between Sox9 and Kcnj2 are removed. Overall, according
to those experiments, TAD fusion is disclosed as a result
of removal of crucial CTCF binding sites inside TADs as
well as across their boundaries.

We have analyzed whether those modifications in the
TAD structure can be predicted by PROBC once we have
perturbed the input CTCF dataset. We trained PROBC by
using human ES cells dataset, and we made predictions
across species in mouse ES cells. PROBC has normally pre-
dicted a robust TAD boundary between Sox9 and Kcnj2,
putting these into separate TADs. Once we mask the four
CTCEF binding sites at the boundary and additionally mask
the whole set of CFCF binding sites, results predicted
by PROBC are consistent with the true experiments in
which 2 separate TADs are slowly combined into a single
TAD. Furthermore, we have investigated the association
between CTCF binding sites and formation of TADs via
feature attribution approaches. We have estimated SHAP
values [52], and averaged them out for bins. We have
found that CTCF binding sites at TAD boundary are
important for TAD segregation across the unperturbed
experiments. On the other hand, by using the perturbed
CTCEF dataset, the attribution scores have focused more
on distant parts at fused TAD boundaries.

In another experiment, we have investigated whether
changes in the structure due to genomic deletions can
be predicted by PROBC. Yang et al. [53] have found
that FLT3 gene is upregulated in acute lymphoblastic
leukemia (ALL) cell datasets with a 13q12.2 deletion. They
have also associated that expression increase to enhancer
hijacking and chromatin’s organization. They have found
that regulation of FLT3 is achieved via 3 functional reg-
ulatory elements over 13q12.2 segment: DS1 (chrl3
28,100, 363 — 28, 100, 863), FLT3’s promoter; DS2 (chrl3 :
28,135, 863—28, 140, 863); and DS3 (chr13 : 28,268, 863 —
28,269, 363) which belongs to PAN3 gene’s intron. Across
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non-cancer hematopoietic cells, the interaction between
DS2 and DS1 elements mainly control FLT3 gene for par-
tition into 2 TADs, where DS3 is positioned over a closer
TAD and DS2 element intersects with the TAD boundary.
When DS2 has been dropped due to delection of 13q12.2
region, Yang et al. [53] has noticed that longer-range inter-
action between DS3 and DS1 becomes more stronger, and
two closer TADs are fused.

In our evaluatuon, simulation of this deletion is achieved
by cutting out DS2 region from all chromatin marks input
datasets and predicting the interaction matrix via PROBC.
In this case, all chromatin marks corresponding to the
deleted region were removed, and the remaining two par-
titions were added together. TADs inferred by PROBC are
compatible with the true discoveries. Without 13q12.2
deletion, a smaller TAD segregation between PAN3 and
FLT3 genes are predicted by PROBC, in line with the
ground truth. However, once 13q12.2 is deleted, PROBC
finds that 2 TADs are fused together and number of
interactions between PAN3 and FLT3 increases.

PrOBC can accurately predict cross-cell types and
cross-species interactions

We predict Hi-C/Micro-C interactions on mouse ES
and human ES chromosomes over PROBC trained with
chromosome-wide human ES and mouse ES cells respec-
tively. We apply fivefold cross validation to Hi-C, his-
tone modifications and transcription factor binding sites
datasets. Figure 10a displays AUC score across 23 human
chromosomes (22 + X chromosomes). The worst perfor-
mance is observed for X chromosome, and PROBC can
predict inter-chromosomal interactions less accurately
than the intra-chromosomal interactions. Similar predic-
tion analysis on mouse ES cells while training PROBC
over human ES chromosomes is shown in Fig. 10b. Addi-
tionally, we investigate the impact of cell types in Hi-C
interaction prediction as in Fig. 11. The prediction per-
formance between human IMR90 and human ES is better
than the prediction between species suggesting that com-
mon subset of chromatin marks explain genome shapes of
different cell types in the same species. There is no signif-
icant performance difference between training on human
ES vs. IMR90.

Prediction performance between species is lower than
the performance between cell types on the same species,
showing effective histone modifications may slightly differ
across species. Results show the importance of species-
specific interactions between histone modifications in
genome shape, since the performance decreases even
when modifications are transferred from a closer species.

PrROBC is robust to changes in A1 and 1>
PROBC is robust to changes in sparsity parameter 1 and
low-rank parameter A as seen in Fig. 12a-b respectively.
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Fig. 10 AUC score for interaction prediction a) human ES from mouse ES, b) mouse ES from human ES cells. We apply fivefold cross-validation to
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(b) Genome-wide Hi-C prediction per-
formance across low-rank parameter \s.

We obtain AUC score by decreasing the Hi-C interaction
probability threshold from 1 to 0. A reasonable increase
of A; does not significantly decrease the quality of the
predictions, while it leads Hi-C data to be explained by
fewer chromatin marks. A subset of previously identified
histone modifications (H3K27ac, H3K9me3, H3K4me3,
H3K4mel) and CTCF appear in the solution when 1; >
5. On the other hand, increasing the low-rank parame-
ter Ay ensures block diagonal/communities structure of
the mark interactions matrix, but decreases genome-wide
performance especially when A, > 10. Robustness of
PROBC across parameters shows that the reported per-
formance and generated insights in previous sections are
quite reliable.

ProBC is stable to enzyme replicates, robust across
resolution parameters

Hi-C experiments utilizes a restriction enzyme such as
Mbol and HindIII to cleave the DNA after cross-linking,
and different restriction enzymes can be used to ana-
lyze the sequence dataset multiple times for this purpose.
Even though the resulting restriction fragments differ, the
complete genome architecture and thus epigenetic and
transcription marks should be the same from such repli-
cate experiments. Therefore, we assess the stability of
PROBC regarding the similarity of the interaction prob-
abilities inferred from two replicate Hi-C experiments

that differ only in the choice of restriction enzyme. Spe-
cially, we apply PROBC to two enzyme replicates, Mbol
and HindlIIl, carried out in human IMR90 cells. We evalu-
ate the stability by Spearman correlation between the two
pairwise interaction probabilities matrices of the pairs of
histone modifications on each chromosome as in Fig. 13a.
Overall, correlation is broadly the same across chromo-
somes, and the correlation between different restriction
enzymes on chromosomes 4 and 7 is slightly higher than
the rest.

Similarly, our methods are stable to changes in reso-
lution as seen in Fig. 13b, where Spearman correlation
between binned pairs of interaction probabilities at 5 kb,
50 kb, 250 kb resolutions are calculated on IMR90 cells
for each chromosome. Interaction matrices between chro-
matin marks are most similar between 5 kb and 50 kb
resolutions, where the matrices tend to be different for
lower resolutions (250 kb). For lower resolution, due to the
binning effect, we tend to see almost all histone modifica-
tions in every bin so the expressive power of our methods
decreases significantly.

Conclusion

We explore the 3D genome organization by investigating
how individual chromatin marks such as histone mod-
ifications and transcription factor binding sites as well
as interactions between these chromatin marks explain
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Spearman correlation in human IMR90 chromosomes

1.2 5 kb - 50 kb
B 5 kb - 250 kb

o I 50 kb - 250 kb

0.8

0.6

Spearman correlation

0.2

0.0
12345678 91011121314151617 1819202122

Chromosome

(b) Spearman correlation between reso-
lutions for each chromosome on IMR90
cells.

Spearman correlation between Mbol and Hindlll
1.0
0.8
c
.0
=1
)
Los
S
o
c
(3]
1S
504
[
o
wn
0.2
0.0
123456 78 910111213141516 171819202122
Chromosome
(a) Spearman correlation between re-
striction enzymes Mbol and HindIII for
each chromosome.
Fig. 13 PrOBC is stable to enzyme replicates, robust across resolution parameters

Hi-C interactions. We come up with a novel probabilis-
tic generative model-based method PROBC to optimally
decompose Hi-C interactions in terms of these chro-
matin marks at genome and chromosome levels. Via our
method, we find a subset of histone modifications and
transcription factor binding sites to be predictive of Hi-C
interactions and TADs across human, mouse, and differ-
ent cell types. Given Hi-C data is still limited to certain
species, accurate prediction of Hi-C interactions at a high
resolution without integrating Hi-C data is mainly useful
to analyze the 3D genome shape on such species. The sim-
ilarity of the chromatin marks found as important across
chromosomes suggests the similarity of main properties
controlling chromosomal contacts. In summary, the anal-
ysis performed and all predictions made by PROBC in
this work give good insights in exploring the 3D chro-
matin organization. We find that identified chromatin
marks alone carry almost enough information to predict
chromosomal structures.

In the future, we can extend the proposed method to
recent multilocus chromatin interaction datasets by using
a hypergraph instead of a graph. The assumption of same
interaction probability in PROBC between marks might be
relaxed as it is still open whether chromatin marks work
differently depending on genome region. Lastly, we can
extend PROBC to directly carry out a differential analysis
on multiple tissues to predict differential interactions.
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